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Legal Disclaimer

The opinions expressed in the presentation and on the follow-
ing slides are solely of mine, and not of my employer.

The technique(s) presented hereafter are offensive in nature;
and are generally considered a criminal offence if practiced
without proper authorization in place. It is presented here for
educational purpose only. In other words, if you come to me
saying that you are neck-deep in mess due to these techniques,
I won't feel responsible at all.



Who am 17

» Independent security researcher, with deep interest in offensive
malware techniques and cryptography.

» | love to attend and speak at various security conferences and
meet-ups.

» You can contact me on LinkedIn (AdhokshajMishra), or via
e-mail (me@adhokshajmishraonline.in)



Introduction: Motivation behind work

> “Fansmitter: Acoustic Data Exfiltration from (Speakerless)
Air-Gapped Computers’ [https://arxiv.org/abs/1606.05915]

» Limitations of Fansmitter: not all fans are software controlled;
and those which are, need root/administrator privilege.



Introduction: Why Tempsmitter

» Because side channels are sexy.

» Fansmitter is for air-gapped systems. |PC between processes
on same host is way more common, and so is networked
infrastructure.

» Fansmitter needs specific privileges, and hardware support.

Tempsmitter tries to remove dependence on specific hardware, higher
privileges; while providing a way to perform IPC on same host.



CPU

» A CPU is a physical is the electronic circuitry within a
computer that carries out the instructions of a computer
program by performing the basic arithmetic, logic, controlling,
and input/output (1/O) operations specified by the
instructions.

» Most CPUs used today are microprocessors (i.e. whole CPU is
packed in a single IC)

» Most (if not all) CPUs used in complex machines used today
are based on microprogrammed control unit, while other
simple ones are based on hardcoded logic.



Instruction Set

» An instruction set is the complete set of all the instructions in
machine code that can be recognized and executed by a CPU.
The instruction sets are dictated by ISA (instruction set
architecture) which is abstract model of a computer which is
targeted by various implementations of same ISA.

» It can be CISC (Intel/AMD), RISC (ARM), MISC (many 8-bit
uC), VLIW (SHARC), EPIC (under research).

» The abstract model can be a register machine, a stack
machine (JVM), or a mix of both (Intel/AMD).



Power

» Thumb rule: the more work you do per unit time, the more
power you need.

» The more complex ISA, the more power you need to run an
implementation. This is why mobiles are mostly powered by
ARM (RISC), while laptops, workstations and servers are
powered by Intel and AMD (CISC/VLIW).

» The more complex instruction, the more power it will draw.

» Drawback: you cannot keep drawing high power for long time,
otherwise magic smoke will leak from CPU (unless you have
fancy liquid cooling).



Naive Method

» Dead simple mechanism: High = 1, Low = 0. It can be
voltage, current, tension, luminosity or something else that can
be controlled.

» Pretty simple design: all you need is an encoder (bits to
high/low levels), a decoder (high/low levels to bits), and a
clock on both ends.

How hard can it be in practice, really?



Timing Problem

It turns out, it will be pretty hard.

» An ideal clock does not drift, but a practical clock drifts. By
drift, we mean that the clock does not run at exact same
frequency with an ideal reference clock. With long data
transmission, you will either get repeated bits, or you will miss
bits; depending upon which way your clocks are drifting.



Timing
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Timing Problem

Since we ran into problem with two different clocks at different ends,
let us just use one clock, which can send timing signal at both ends.

Problem solved, right?

RIGHT?



Timing Problem

Unfortunately, using same clock source at both ends leads us to
different problem: timing skew.

Timing skew is a phenomenon in synchronous digital circuit systems
in which the same sourced clock signal arrives at different compo-
nents at different times. The instantaneous difference between the
readings of any two clocks is called their skew.



Timing Problem
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Timing Problem

An ideal edge-triggered latch samples the data line instantaneously
on one of the edges of the clock. However, in practice, the data
must be valid for some finite amount of time around the clock edge.
The time it must be fixed before the clock edge is called the setup
time, and the time it must be fixed after the clock edge is called the
hold time.

Violation of setup time is called setup violation (which is called by
negative skew). Similarly, violation of hold time is called hold viola-
tion (which is caused by positive skew).



Timing Problem
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Timing Problem
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Timing Problem

Due to static differences in the clock latency from the clock source to
each clocked register, no clock signal is perfectly periodic, so that the
clock period or clock cycle time varies even at a single component,
and this variation is known as clock jitter. This is yet another variable
in timing leading to uncertanities.



Timing Problem
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Timing Problem

Can we even solve all these problems?



Timing Problem: Solution

DA



Self-Clocking Signalling

Problems we have to solve now:

» How to send timing information to a reciever without a
synchronized clock?

» How to send data WITH timing information reliably?



Self-Clocking Signalling

Sending timing information:

» A reference wave of constant frequency (f) can be used to
transmit timing information. Reciever can sample the incoming
signal at >2f, and can derive timing information from that.



Self-Clocking Signalling

Sending data information:

» Since we are relying on constant frequency of reference wave
for timing information, we cannot use frequency modulation to
encode data.

» Amplitude modulation is an option, but that is prone to
interference. This will result in unreliable decoding due to
noise, and therefore is not suitable.

» Phase modulation is another option, which is not prone to
interference (not at level of amplitude modulation).



Self-Clocking Signalling

Modulation/De-modulation scheme:

» Since we are going to transmit digital bitstream over analog
carrier signal, we need some digital modulation scheme.

» Since phase modulation is the only option to send data, we
will settle with Phase Shift Keying.



Binary Phase Shift Keying

> |t is simplest form of Phase Shift Keying, and uses two phases
separated by 180°.

> |t handles the highest noise level or distortion before the
demodulator reaches an incorrect decision.

» It can modulate only 1 bit per symbol, and therefore is not
suitable for high data rate channels.

» Data is often differentially encoded before modulation.



Manchester Code

» Developed at University of Manchester, and used to store data
on magnetic drums of Manchester Mark 1.

> |t is a special case of binary phase-shift keying, where the data
controls the phase of a square wave carrier whose frequency is
the data rate.

> |t ensures frequent state transitions, directly proportional to
the clock rate; this helps clock recovery.



Manchester Code

Conventions for representing data:

As per IEEE 802.3
» Logic 0: High — Low signal sequence
» Logic 1: Low — High signal sequence

As per G. E. Thomas
» Logic 0: Low — High signal sequence
» Logic 1: High — Low signal sequence
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Synchronization

How do we know exactly when data transmission starts?



Synchronization

» We can tell decoder where data starts via out of band
signalling. This requires another signalling mechanism to
transmit synchronization information.

» We can use in-band signalling to tell decoder when to start
reading data. We can set a “magic signal sequence” which
signals start of data transmission. Similarly, we can also have
another “magic signal sequence” which signals stop of data
transmission.



Self-Synchronizing Code

A self-synchronizing code is a uniquely decodable code in which the
symbol stream formed by a portion of one code word, or by the
overlapped portion of any two adjacent code words, is not a valid
code word. In other words, a set of strings over an alphabet is called a
self-synchronizing code if for each string obtained by concatenating
two code words, the substring starting at the second symbol and
ending at the second-last symbol does not contain any code word as
substring.



Self-Synchronizing Code



Self-Synchronizing Code

In very simple terms, we need to figure out only two magic sequences,
both of which are not valid encoding of any data. One of them can
denote beginning of data, and other can denote end of data.



Self-Synchronizing Code

Examples:

» In UTF-8, bit patterns Oxxxxxxx and 11xxxxxx are used to
mark the beginning of the next valid character



Noise

» |t is an error or undesired random disturbance of a useful
information signal.

» It may result from intermodulation, crosstalk, atmosphere, or
cosmic radiations.

» It will corrupt the parameters of modulated waveform.



Noise
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Shannon-Hartley Theorem

Shannon-Hartley Theorem gives us a hard limit of speed at which we
can communicate over a noisy channel.

The channel capacity C (the theoretical tightest upper bound on the
information rate of data that can be communicated at an arbitrarily
low error rate) using an average received signal power S through an
analog communication channel subject to additive white Gaussian
noise (AWGN) of power N:

C =B logo(1 + %)



Shannon-Hartley Theorem

C =B loga(1 + %)

Where

» C is the channel capacity in bits per second, a theoretical
upper bound on the net bit rate (information rate) excluding
error-correction codes;

» B is the bandwidth of the channel in hertz (passband
bandwidth in case of a bandpass signal);

» S is the average received signal power over the bandwidth (in
case of a carrier-modulated passband transmission, often
denoted C), measured in watts (or volts squared);



Shannon-Hartley Theorem

C=8B /Og2(]. —+ %)

Where

> N is the average power of the noise and interference over the
bandwidth, measured in watts (or volts squared);

» and S / N is the signal-to-noise ratio (SNR) or the
carrier-to-noise ratio (CNR) of the communication signal to
the noise and interference at the receiver (expressed as a linear
power ratio, not as logarithmic decibels).



Noisy Channel Coding Theorem

Given a noisy channel with channel capacity C and information trans-
mitted at a rate R, then if R < C there exist codes that allow the
probability of error at the receiver to be made arbitrarily small.



Noisy Channel Coding Theorem

If R > C, an arbitrarily small probability of error is not achievable. All
codes will have a probability of error greater than a certain positive
minimal level, and this level increases as the rate increases. So,
information cannot be guaranteed to be transmitted reliably across
a channel at rates beyond the channel capacity.



Noisy Channel Coding Theorem

In very easy terms, Noisy Channel Coding Theorem proves existence
of error correction codes, which allow us to transmit data over noisy
medium without corruption. This theorem has wide-range appli-
cations in communication, and data storage. It is of fundamental
importance in information theory.



Error Correction Code

» Error correcting code (ECC) is used for controlling errors in
data over unreliable or noisy communication channels. The
central idea is the sender encodes the message with a
redundant in the form of an ECC.

» In general, a stronger code induces more redundancy that
needs to be transmitted using the available bandwidth, which
reduces the effective bit-rate while improving the received
effective signal-to-noise ratio.



Error Correction Code

Coding schemes

Block codes.

Redundant bits are added as a block
to the end of the initial message.
Example: (3, 4) Hamming code
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Continuous codes.

Redundant bits are added continuously
into the structure of code word.
Example: Convolutional code
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Error Correction Code

Examples:

» Hamming Code
» Reed Solomon Code

» Convolutional Code



Covert Channel

In computer security, a covert channel is a type of attack that creates
a capability to transfer information objects between processes that
are not supposed to be allowed to communicate by the computer
security policy.



Elements of Covert Channel

» A medium with controllable parameter. This can be
timestamp of a file, metadata of some other component,
system load, resource utilization etc.

» A mechanism to control chosen parameter with respect to
time. In simple terms, we should be able to reliably affect
timestamp/metadata/system load/resource utilizatione or
whatever parameter we are choosing.



Elemets of Covert Channel

» Modulation and demodulation scheme. This is required to
map data bits in state of parameter at sender’s as well as
receiver's side.

» Clocking and synchronization



Temperature as Covert Channel

v

Medium: CPU Dice Temperature
Controllable Parameter: Temperature

Control Mechanism: Stressing the CPU, and relieving the
stress

Modulation and Demodulation scheme: Use any suitable
scheme you are happy with

Clocking and synchronization: Use any suitable scheme you
are happy with



Hunting the Power Hungry Instructitons

Instruction Set Extensions supported by Intel Chips:

x86

AMD64

SSE (Streaming SIMD Extensions)
MMX

AVX

vVvYyyvyy



Hunting the Power Hungry Instructions

Thumb Rule 1: The more work you do in per unit time, the more
power it will draw.

Thumb Rule 2: The more complex instruction set, the more power
it will daw.

Thumb Rule 3: The more complex instruction, the more power it
will draw.



Hunting the Power Hungry Instructions

Some more useful tidbits:

» Intel instruction sets generally increase in complexity with time.

» CPUs mostly run underclocked @ “800MHz-1.2GHz. If the
load increases, CPU increases clock speed upto base clock
speed (SpeedStep). If load persists further, CPU overclocks
itself for short time (Turbo Boost).

> Power consumtion is roughly proportional to 3"power of
frequency. Therefore, if CPU frequency increases, thermal
dissipation will also increase.



Hunting the Power Hungry Instructions

For design of our covert channel, we settle with AVX instruction set
that is supported by newer Intel CPUs.

To decide which instructions draw highest power, use instructions
one by one in a loop, run it, and see how hot CPU becomes. This is

the approach | took.



Hunting the Power Hungry Instructions

We settle with following instructions:

>

vvyyy

VFMADD132PD (Multiply packed double-precision
floating-point values from ymmX and ymmZ, add to ymmY
and put result in ymmX)

VBROADCASTSD
VMULPD/SD
VSUBPD/SD
VADDPD/SD



Power De-optimization of Code

Problem statement: generate maximum heat using chosen assembly
instructions.



Power De-optimization of Code

Any ideas?



Power De-optimizaton of Code

Pro tips:

» Floating point arithmetic is costlier than integer arithmetic.

» Division is costlier than multiplication, which is costlier than
addition/subtraction, which is costlier than logical boolean
operations.

» Ratio of costly instructions to cheap instructions should be as
high as possible. In other words, DO NOT loop around a
single costly instruction.

» Always attempt to run same code in different threads (1
thread per CPU core).



Cooling the CPU Down

Time to head back to school level physics.

Newton's law of cooling: the rate of change of the temperature of an
object is proportional to the difference between its own temperature
and the ambient temperature (i.e. the temperature of its surround-
ings).



Cooling the CPU Down

In other words, temperature difference between heat sink and CPU
dice should be large enough to cool CPU down quickly.

Which means, we cannot keep CPU hot for long time, as that will
start heating contact surface of heat sink, which will decelerate cool-
ing of CPU. Even worse, CPU may throttle rather aggressively if it
runs hot for long time. At worst case, if CPU dice reaches peak
temperature, system will turn off immediately to prevent meltdown.



Cooling the CPU Down

Cooling mechanism is simple: release all the load at once, and let
cooling system handle everything else.



Constraints on Covert Channel

» Should be able to heat CPU within 2-3 seconds by sufficient
margin

» CPU should be able to cool down within 3-4 seconds back to
old temperature

» Heating and cooling should be reliable with respect to time
(i.e. it should take same time to heat to same temperature)

» System load from all other processes running on the system is
almost static.



Designing the Hot Loop

To put everything in code, we have three choices:

» Use assembly to write hot loop
» Use inline assembly to write hot loop, mixed with C++ code

» Use intrinsics to write hot loop

We will use Intel intrinsics to write our hot loop, as there is less
chance of error (in writing incorrect assembly), and the code does
not look ugly.



Tools of Trade

All we need is:

» A linux box (you can do it on Windows/MacOS/BSD etc as
well)

» GNU G++ Compiler



Designing the Hot Loop

The Setup

register __m256d r0,r1,r2,r3,r4,r5,r6,r7,r8,r9,rA,
rB,rC,rD,rE,rF;

r0 = _mm256_setl_pd(XXXX);
rl = _mm256_setl_pd (XXXX);

rF = _mm256_setl_pd (XXXX) ;

XXXX is a placeholder for arbitrary double precision floating point
values.



Designing the Hot Loop

The hot loop

r0 = _mm256_mul_pd(r0,rC);
rl = _mm256_add_pd(r1,rD);
r2 = _mm256_mul_pd(r2,rE);
r3 = _mm256_sub_pd(r3,rF);
r8 = _mm256_mul_pd(r8,rC);
r9 = _mm256_add_pd(r9,rD);
rA = _mm256_mul_pd(rA,rE);
rB = _mm256_sub_pd(rB,rF);

The hot loop contains more variations of similar code to ensure that
CPU sees AVX instructions one after another to trigger SpeedStep
(and possibly TurboBoost) to reach higher and higher frequencies.



Data I/O on Covert Channel

Writing data

v

Convert data to binary bitstream

Add error correction codes as deemed fit

Encode with any binary phase shift keying based encoding
scheme

For every 1 in encoded bitstream, run the hot loop until CPU
heats up.

For every 0 in encoded bitstream, go to sleep state for some
fixed time internal (roughly same as needed by hot loop)



Data I/O on Covert Channel

CPU temperature can be read from the following path under Linux
(kernel: 5.3.11-arch1-1):

/sys/class/hwmon/hwmonX/tempY_input
X and Y are integers. You have to check exact path on your system

to ensure that you pick CPU dice temperature sensors instead of
other sensors (GPU, System etc).



Data I/O on Covert Channel

Reading data

| 4

Sample CPU dice temperature in a loop at sufficiently high
frequency (> 2x frequency of modulation)

Demodulate the temperature data to get encoded bitstream

Decode the bitstream by inverse of encoding scheme used in
writing data

Use error correction codes to determine and recover errors in
bitstream

Recover original bitstream after correcting all errors.
Convert bitstream to suitable format



DEMO TIME



Test Setup

Hardware
» CPU: Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz

» Cooling: 3 heat-sinks cooled with two independently controlled
fans

» Sensors: 1 per core x 4, 1 per CPU package x 1



Test Setup

Software
» OS: Arch Linux x64 (Kernel: 5.3.11-arch1-1)

» Compiler: GNU GCC 9.2.0 (invocation flags: -03 -fopenmp
-march=native -mtune=native)

» CPU Microcode version: 20191113-1



Test Setup

Configuration
» Cores enabled: 4
Hyper-Threading: Enabled (total cores: 8)
SpeedStep: Enabled
TurboBoost: Enabled

>
>
>
» Frequency Scaling Governor: ONDEMAND



Hot Loop

Inner hot loop:
» vfmadd132pd: 18
» vmulpd: 6
» vaddpd: 6

The inner hot loop is run 210 million times per heating cycle.



Hot Loop

Outer hot loop:
» vaddpd: 11
» vbroadcastsd: 9
» vaddsd: 6
> vmulsd: 3

The outer hot loop is run 210 thousand times per heating cycle.



Data

» Timeperiod of 1 heating cycle: 2 seconds (approximated) /
1950ms to 2050ms (as observed)

» Timeperiod of 1 cooling cycle: 2 seconds (approximated) /
2000ms (as programmed)

» Temperature delta in heating cycle: +25°C (peak) / +20°C
(average)

» Temperature delta in cooling cycle: —25°C (peak) / —20°C
(average)



Countermeasures

Monitor all the parameters of system for abnormal “patterns”.



Countermeasures

CPU dice temperature inC

Temperature v/s time under normal use
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Countermeasures

Temperature v/s time under covert channel
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Countermeasures

Temperature v/s Time graph

» Under normal use, the graph fluctuates within a narrow range,
and has only a few spikes.

» Under covert channel, the graph fluctuates within a wider
range, and has many rising and falling edges. Also, instead of
spikes, it has flatter peaks.



Countermeasures

Just like tempearture, CPU clock frequency can also be monitored
to reveal presence of something sneaky.



Countermeasures

Clock frequency in MHz

CPU frequency v/s time under normal use
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Countermeasures

CPU frequency in Mz
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Countermeasures

Frequency v/s Time graph:

» Graph fluctuates within wide range in both cases.

» Under normal load, there are many spikes in graph as CPU
momentarily switches to higher frequencies, and comes down
quickly.

» Under normal load, CPU remains below base clock frequency
for most (if not all) part.

» Under cover channel, we again see rises and falls, and flat
peaks instead of spikes just like temperature v/s time graph.

» Under covert channel, all peaks are at higher than base clock
frequency, well within range of TurboBoost.



Countermeasures

Other useful parameters:

» Overall system load will show pattern similar to temperature
and frequency. Using this, offending process can often be
isolated without much effort.

» Such channels may or may not impact memory utilization
and/or fan speed, depending upon how those are constructed.
For example, Tempsmitter does not affect fan RPM.



Countermeasures

In general, it takes specialized “witch hunting” mission with careful
examination of all such parameters to find a covert channel. These
parameters may include electromagnetic intereference, LEDs, acous-
tic noises, brightness, sound-waves beyond capacity of human ear
etc.



THANK YOU
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