
Bypassing Linux EDRs
for fun and profit

Adhokshaj Mishra



Who am I?
●Security researcher (Linux) @ Uptycs Inc.
–Malware (offensive / defensive)
●Linux and FOSS enthusiast

●Loves presenting in meetups and conferences

●Hobbyist programmer (C++)

●Get in touch:
–Email: me <at> adhokshajmishraonline <dot> in



Agenda
●What is an EDR
–What does it do?
–How does it do it?
●General capabilities
–How are they implemented?
●Deep dive into EDR techniques
–Visibility
–Detection



Agenda
●Deep dive into EDR techniques
–Prevention
●Limitation and blind spots
–How to exploit them?

●Defense evasion
–From detection
–From prevention
●Closing notes



What is an EDR?
●Integrated endpoint security solution
–Real-time continuous monitoring
–Continuous data collection, and analysis
–Anomaly detection
–Semi-automated response
●Blocking
●Containment
●Notification



What is an EDR?
●Generally centrally monitored and controlled
–Agent process on every endpoint
–Optional: kernel level drivers
–Optional: binary blobs at middleware level

●Central data aggregation and analysis
–Rule based analysis
–Statstical analysis
–AI / ML models



EDR Capabilities
●Real-time system tracing
–Process execution
●And process relationships
–File access
–Privilege manipulation
–Network activity



EDR Capabilities
●Memory analysis
–Does this process have <something> in its 
memory?
●Trivial example: yara based detection
●Anomaly detection
–Does this process behave as expected?
●Example: apache/nginx modifying PAM 
configuration.



EDR Capabilities
●Use case creation
–Aids in hypothesis based proactive threat 
hunting
●Integration with services like VirusTotal
–Helps in finding related binaries, records of 
prior activities



Thing you learn after building EDR software that
runs on millions of endpoints across the world:
“X should definitely not be doing Y” will almost
always detect APT. It will also shut some
company’s critical servers because they rely on
that specific behaviour.



The detection pipeline
Red-teamers be like:
–Own everything
–Capture crown jewels
–Recommendation: Oh you just need to log X to 
detect Y.



The detection pipeline



The detection pipeleine
●The classic recommendation is no better than 
“draw rest of the owl” meme.
–Logging X at scale creates HUGE amount of data
●Most of it is noise
–Now you have to analyse even bigger data to 
find anomaly
●And chances of missing something malicious 
become higher



The detection pipeline

Raw Data



The detection pipeline

Raw Data
Filtered
Data



The detection pipeline

Raw Data
Filtered
Data

Alerts



EDR Techniques
Common visibility sources
–Kernel level
●System-call tracepoints
●Linux security modules



EDR Techniques
Common visibility sources
–User level
●Linux Audit Subsystem
●Extended Berkeley Packet Filter (eBPF)
●Filesystem event notification system



EDR Techniques
Common visibility sources
–Middleware level
●Shared object injection
–LD_PRELOAD
–LD_LIBRARY_PATH
●Controlling the dynamic linker
–LD_AUDIT



EDR Techniques
Common detection parameters
–Process execution
●Process tree
●Owner user/group
●Effective user/group
●Command line
●Hash of process binary



EDR Techniques
Common detection parameters
–Filesystem access
●File path
●Access type
●Process trying to perform operation
●Process tree
●User and group information



EDR Techniques
Common detection parameters
–Network access
●Local IP and port
●Remote host and port
●Operation type
●Protocol
●Process trying to perform operation
●Process tree
●User and group information



EDR Techniques
Common detection parameters
–Privilege manipulation
●Current user information
●Current process information
●PAM parameters



EDR Techniques
Common prevention mechanisms
–Kernel level
●Linux Security Modules
–Middleware level
●Hooks using LD_AUDIT / LD_PRELOAD etc.
●Seccomp profile via PAM
–User level
●Filesystem event notification and permission 
subsystem



Limitations
Common visibility sources

●Kernel level
–System-call tracepoints
●Kernel driver compiled against one particular 
version (down to patch level), is not really 
going to work against another version.
●Need to build and test against every kernel 
version supported in every linux distro (and 
their versions) that we are going to support.



Limitations
Common visibility sources

●Kernel level
–Linux security modules
●Need to be compiled in the source tree of target 
kernel
●Cannot be loaded or unloaded dynamically
●Need to distribute compiled kernel for every 
distro (and their versions) that are going to be 
supported.



Limitations
Common visibility sources

●User level
–Linux Audit Subsystem
●Only one process can read data from audit 
subsystem socket at any time.
●If EDR agent does not forward event logs, these 
cannot be forwarded to some log 
aggregator/analysis tool.



Limitations
Common visibility sources

●User level
–Extended Berkeley Packet Filter (eBPF)
●Powerful enough only in recent kernels (4.18+)
●Tooling used to be dependent upon LLVM for 
“compilation on demand”
●eBPF helper libraries (and related 
infrastructure) are pretty recent



Limitations
Common visibility sources

●User level
–Filesystem event notification system
●Does not catch events occuring on network 
filesystems.
●File accesses and modifications via mmap(), 
msync(), and munmap() will be missed.
●Activity on children of a marked directory does 
not create events for the monitored directory 
itself.



Limitations
Common visibility sources

●Middleware level
–Shared object injection
●Does not work with statically linked binaries.
●Does not work with dynamically linked binaries 
using non-traditional dynamic linker.



Limitations
Common visibility sources

●Middleware level
–Controlling the dynamic linker
●Does not work with statically linked binaries.
●Does not work with dynamically linked binaries 
using non-traditional dynamic linker.



Other Blind Spots
●Command lines are brittle.
–Command lines can be altered while preserving 
intended behaviour
●Process tree is brittle.
–Ensuring process tree integrity is much harder 
than you think
–Process trees can be altered.



Other Blind Spots
●File integrity monitoring is hard
–Multiple paths can point to same file in a 
filesystem
–Not all filesystems support event notification
–A process can perform file I/O without touching 
filesystem stack.



Other Blind Spots
●System call events may appear with different 
process than monitored
–Processes inherit a lot of things.

●Detecting shell environment variables is not a 
reliable way to detect almost anything.
–Detecting LD_PRELOAD, anyone?



Defense Evasion
Let us start hacking already...



Defense Evasion
●Command line arguments
–Way too much detection depends upon binary 
being executed, and its command line parameters.
–Example: crontab – may be detected to trigger an 
alert.



Defense Evasion
●Sample detection
Event: Process updating cron job using crontab
pid: 120556
path: /usr/bin/crontab
cmdline: crontab -
current working directory: /home/adhokshajmishra
event time: Tue Jun 15 09:35:12 PM IST 2021
parent: /usr/bin/zsh



Defense Evasion
●Common techniques
–Change executable name
●Copy with different name
●Symlink with different name



Defense Evasion
●Common techniques
–Using utilities which can act like other 
ulities
●Busybox
●Toybox
●Gow



Defense Evasion
●Common techniques
–Using utilities which can run other binaries
●ld.so
●systemd-run



Defense Evasion
●Process tree
–Another significant chunk of detection depends 
upon process tree spawning the “offending” 
process.
–Example: bash getting spawned from some terminal 
emulator is okay, but getting spawned from nginx 
is not.



Defense Evasion
●Sample detection
Event: Shell being spawned by nginx
pid: 120570
path: /usr/bin/bash
cmdline: /usr/bin/bash -c “wget https://...
current working directory: /var/www
event time: Tue Jun 15 09:36:12 PM IST 2021
parent: /usr/bin/nginx



Defense Evasion
●Common techniques
–Let some other process do the work
●Insert cron entry for some suitable user
●Add a system service, and let systemd do the job



Defense Evasion
●Common techniques
–Or, code injection
●Add entry in /etc/ld.so.preload
●Add PAM module to inject shared object in user 
session
●Use ptrace to control another process, and spawn 
from there



Defense Evasion
●Common techniques
–Poisoning dynamic linker cache
●Modify /etc/ld.so.cache in-place, to overwride a 
common shared object (and load your bogus one)
–Patching dynamic linker
●Modify the ld.so in-place to read ld.so.preload 
from alternate (non-standard path)



Questions?


